Mesenchymal Stem Cells in the treatment of Cerebral Ischemic Injury

Nilton B.A. Junior, Ricardo J. Del Carlo, Lukiya S.C. Favarato, Vanessa G. Pereira, Aline R. Murta, Betânia S. Monteiro, Daise Nunes Queiroz da Cunha

Abstract


Mesenchymal stem cells (MSC) are undifferentiated adult stem cells capable of self-renewal and differentiation with a broad tissue distribution essential for tissue repairing and maintenance. These cells are isolated and expanded in vitro and kept as stem cells throughout many generations while maintaining its capability of differentiation when receiving appropriate stimuli. They have intrinsic multilineage potential, and as such, under special experimental conditions, are capable of differentiating into neuronal and glial cells, both in vivo and in vitro. The MSC migrate to the injured site after being intravenously injected, and in there promote endogenous cell proliferation, diminish apoptosis, and reduce the neurological deficits resulting from cerebral ischemia. In this review we describe the many actions that the MSC exert on the injured nervous tissue, through their direct, paracrine, and systemic effects.


Keywords


Mesenchymal stem cells; cerebral ischemia; apoptosis; neuroprotection; neuroregeneration; angiogenesis; neurogenesis

Full Text:

HTML PDF EPUB XML

References


Amor, S., F. Puentes, D. Baker and P. VanDerValk. 2010. Inflammation in neurodegenerative diseases. Immunology. 129(2):154-169.

ArgôloNeto, N.M., R.J. Del Carlo, B.S. Monteiro, N.B. Nardi, P.C. Chagastelles, A.F.S. Brito and A.M.S. Reis. 2012. Role of autologous mesenchymalstem cells associated with platelet-rich plasma on healing of cutaneous wounds indiabetic mice. Clinicaland Experimental Dermatology. 37:544–553.

Bao, X., J. Wei, M. Feng, S. Lu, G. Li, W. Dou, W. Ma, S. Ma, Y. An, C. Qin, R.C. Zhao and R. Wang. 2011. Transplantation of human bone marrow-derived mesenchymal stem cells promotes behavioral recovery and endogenous neurogenesis after cerebral ischemia in rats. Brain Res. 1367:103-113.

Barnabé-Heider, F., and F.D. Miller. 2003. Endogenously produced neurotrophins regulate survival and differentiation of cortical progenitors via distinct signaling pathways. J. Neurosci. 15:5149–5160.

Benowitz, L.I., and A. Routtenberg. 1997. GAP-43: an intrinsic determinant of neuronal development and plasticity.Trends Neurosci. 20(2): 84–91.

Bacigaluppi, M., S. Pluchino, L. Peruzzotti-Jametti, E. Kilic, U. Kilic, G. Salani and E. Brambilla. 2009. Delayed post-ischaemicneuroprotection following systemic neural stem cell transplantation involves multiple mechanisms. Brain. 132:2239-2251.

Borlongan, C.V., M. Hadman, C.D. Sanberg and P.R. Sanberg, 2004.Central nervous system entry of peripherally injected umbilical cord blood cells is not required for neuroprotection in stroke. Stroke. 35:2385-2389.

Brenneman, M., S. Sharma, M. Harting, R. Strong, C.S. Cox Jr and J. Aronowski. 2010. Autologous bone marrow mononuclear cells enhance recovery after acute ischemic stroke in young and middle-aged rats. J. Cereb. Blood Flow Metab. 30:140-149.

Caplan, A.I. 2009.Why are MSCs therapeutic? New data: new insight. J. Pathology 217:318-324.

Caplan, A.I., and J.E. Dennis. 2006. Mesenchymal stem cells as trophic mediators. J. Cell. Biochem. 98:1076–1084.

Chen, J., Y. Li, M. Katakowski, X. Chen, L. Wang, D. Lu, M.Lu, S.C. Gautam and M. Chopp. 2003. Intravenous bone marrow stromal cell therapy reduces apoptosis and promotes endogenous cell proliferation after stroke in female rat. J. Neurosci. Res. 73(6):778-786.

Chen, Y.F., X. Zeng, K. Zhang, B.Q. Lai, E.A. Ling and Y.S. Zeng. 2013. Neurotrophin-3 stimulates migration of mesenchymal stem cells overexpressing TrkC. Curr. Med. Chem. 20(24):3022-3033.

Coumans, J.V., T.T. Lin, H.N. Dai, L. Macarthur, M. Mcatee, C. Nash and B.S. Bregman. 2001. Axonal regeneration and functional recovery after complete spinal cord transaction in rats by delayed treatment with transplants and neurotrophins. J. Neurosci. 21:9334–9344.

Del Zoppo, G., I. Ginis, J.M. Hallenbeck, C. Iadecola, X. Wang and G.Z. Feuerstein. 2000. Inflammation and stroke: putative role for cytokines, adhesion molecules and iNOS in brain response to ischemia. Brain Pathol. 10:95–112.

Fitch, M.T., and J. Silver. 2008. CNS injury, glial scars, and inflammation: Inhibitory extracellular matrices and regeneration failure. Exp. Neurol. 209:294–301.

Groves, A.K., A. Entwistle, P.S. Jat and M. Noble. 1993. The characterization of astrocyte cell lines that display properties of glial scar tissue. Dev. Biol. 159:87–104.

Guo, F., S. Lv, Y. Lou, W. Tu, W. Liao, Y. Wang and Z. Deng. 2012. Bone marrow stromal cells enhance the angiogenesis in ischaemic cortex after stroke: involvement of notch signalling. Cell. Biol. Int. 36(11):997-1004.

Inoki, K., Y. Li, T. Zhu, J. Wu and K.L. Guan. 2002. TSC2 is phosphorylated and inhibited by Akt and suppresses mTORsignalling. Nat. Cell. Biol. 4(9):648-657.

Kan, I., Y. Barhum, E. Melamed and D. Offen. 2011. Mesenchymal stem cells stimulate endogenous neurogenesis in the subventricular zone of adult mice. Stem Cell Rev. 7(2):404-412.

Kinnaird, T., E. Stabile, M.S. Burnett, C.W. Lee, S. Barr, S. Fuchs and S.E. Epstein. 2004. Through paracrine mechanisms arteriogenic cytokines and promote in vitro and in vivo arteriogenesis marrow-derived stromal cells express genes encoding a broad spectrum. Circ. Res. 94:678–685.

Kim, H.J., J.H. Lee and S.H. Kim. 2010. Therapeutic effects of human mesenchymal stem cells on traumatic brain injury in rats: secretion of neurotrophic factors and inhibition of apoptosis. J. Neurotrauma. 27(1):131-138.

Krupinski, J., J. Kaluza, P. Kumar, S. Kumar and J.M. Wang. 1994. Role ofangiogenesis in patients with cerebral ischemic stroke. Stroke. 25:1794–1798.

Kurozumi.K., K. Nakamura and T. Tamiya. 2004. BDNF gene-modified mesenchymal stem cells promote functional recovery and reduce infarct size in the rat middle cerebral artery occlusion model. Mol. Ther. 9:189-197.

Li, Y., J. Chen, X.G. Chen, L. Wang, S.C. Gautam, Y.X. Xu, M. Katakowski, L.J. Zhang, M. Lu, N. Janakiraman, M. Chopp. 2002a. Human marrow stromal cell therapy for stroke in rat: neurotrophins and functional recovery. Neurology. 59:514–523.

Li, T.S., K. Hamano, K. Suzuki, H. Ito, N. Zempo, M. Matsuzaki. 2002b. Improved angiogenic potency by implantation of ex vivo hypoxia prestimulated bone marrow cells in rats. Am. J. Physiol. Heart Circ. Physiol. 283(2):H468-473.

Li, Y., J. Chen, C.L. Zhang, L Wang, D. Lu, M. Katakowski, Q. Gao, L.H. Shen, J. Zhang, M. Lu, M. Chopp. 2005. Gliosis and brain remodeling after treatment of stroke in rats with marrow stromal cells. Glia. 49(3):407-17.

Liu, A.M., G. Lu, K.S. Tsang, G. Li, Y. Wu, Z.S. Huang, H.K. Ng, H.F. Kung and W.S. Poon. 2010. Umbilical cord-derived mesenchymal stem cells with forced expression of hepatocyte growth factor enhance remyelination and functional recovery in a rat intracerebral hemorrhage model. Neurosurgery. 67(2):357-365.

Lu, P., L.L. Jones and M.H. Tuszynski. 2005. BDNF-expressing marrow stromal cells support extensive axonal growth at sites of spinal cord injury. Exp. Neurol. 191:344-360.

Mcguckin, C.P., M. Jurga, A.M. Miller, A. Sarnowska, M. Wiedner, N.T. Boyle, M.A. Lynch, A. Jablonska, K. Drela, B. Lukomska, K. Domanska-Janik, L. Kenner, R. Moriggl, O. Degoul, C. Perruisseau-Carrier and N. Forraz. 2013. Ischemic brain injury: a consortium analysis of key factors involved in mesenchymal stem cell-mediated inflammatory reduction. Arch. Biochem. Biophys. 534(1-2):88-97.

Meirelles, L.S., A.L. Caplan, N.B. Nardi. 2008. In search of the in vivo identity of mesenchymal stem cells. Stem Cells. 26:2287-2299.

Monteiro, B.S., R.J. Del Carlo, N.M. Argôlo-Neto, N.B. Nardi, P.H. Carvalho, L.P. Bonfá, P.C. Chagastelles, H.N. Moreira, M.I.V. Viloria and B.S. Santos. 2012. Association of mesenchymal stem cells with platelet rich plasma on the repair of critical calvarial defects in mice. Acta Cirurgica Brasileira. 27(3): 201-209.

Ohsawa, K., Y. Imai, Y. Sasaki and S. Kohsaka. 2004. Microglia/macrophage-specific protein Iba1 binds to fibrin and enhances its action-bundling activity. J. neurochem. 88(4):844-856.

Pierchala, B.A., R.C. Ahrens, A.J. Paden and E.M.Jr. Johnson. 2004. Nerve growth factor promotes the survival of sympathetic neurons through the cooperative function of the protein kinase C and phosphatidylinositol 3-kinase pathways. J. Biol. Chem. 279:27986–27993.

Pittenger, M.F., A.M. Mackay, S.C. Beck, R.K. Jaiswal, R. Douglas, J.D. Mosca, M.A. Moorman, D.W. Simonetti, S. Craig and D.R. Marshak. 1999. Multilineage potential of adult human mesenchymal stem cells. Science. 284:143-147.

Quertainmont, R., D. Cantinieaux, O. Botman, S. Sid, J. Schoenen and R. Franzen. 2012. Mesenchymalstem sell graft improves recovery after spinal cord injury in adult rats through neurotrophic and pro-angiogenic actions. Plos One. 7(6):E39500.

Razavi, S., M.R. Razavi, H. ZarkeshEsfahani, M. Kazemi and F.S. Mostafavi. 2013. Comparing brain-derived neurotrophic factor and ciliaryneurotrophic factor secretion of induced neurotrophic factor secreting cells from human adipose and bone marrow-derived stem cells. Dev. Growth Differ. 55(6):648-655.

Rivera, F.J., S. Couillard-Despres, X. Pedre, S. Ploetz, M. Caioni, C. Lois, U. Bogdahn and L. Aigner. 2006. Mesenchymal stem cells instruct oligodendrogenic fate decision on adult neural stem cells. Stem Cells. 24(10):2209–2219.

Scheibe, F., O. Klein, J. Klose and J. Priller. 2012. Mesenchymal stromal cells rescue cortical neurons from apoptotic cell death in an in vitro model of cerebral ischemia. Cell. Mol. Neurobiol. 32(4):567-576.

Seo, J.H., and S.R. Cho. 2012. Neurorestoration induced by mesenchymal stem cells: potential therapeutic mechanisms for clinical trials. Yonsei Med. J. 1(6):1059-1067.

Sheikh, A.M., A. Nagai, K. Wakabayashi, D. Narantuya, S. Kobayashi, S. Yamaguchi, S.U. Kim. 2011. Mesenchymal stem cell transplantation modulates neuroinflammation in focal cerebral ischemia: contribution of fractalkine and IL-5. Neurobiol. Dis. 41(3):717-724.

Sondell, M., G. Lundborg, M. Kanje. 1999. Vascular endothelial growth factor has neurotrophic activity and stimulates axonal outgrowth, enhancing cell survival and Schwann cell proliferation in the peripheral nervous system. J. Neurosci. 19:5731–5740.

Sugimori, H., H. Speller and S.P. Finklestein. 2001. Intravenous basic fibroblast growth factor produces a persistent reduction in infarct volume following permanent focal ischemia in rats. Neurosci. Lett. 300:13–16.

Suzuki, M., J. Mchugh and C. Tork. 2008. Direct muscle delivery of GDNF with human mesenchymal stem cells improves motor neuron survival and function in a rat model of familial ALS. Mol. Ther. 16:2002–2010.

Tian, L., H. Rauvala and C.G. Gahmberg. 2009. Neuronal regulation of immune responses in the central nervous system. Trends Immunol. 30(2):91-9.

Uccelli, A., F. Benvenuto, A. Laroni and D. Giunti. 2011. Neuroprotective features of mesenchymal stem cells. Clin. Haematol. 24(1):59-64.

Wakabayashi, K., A. Nagai, A.M. Sheikh, Y. Shiota, D. Narantuya, T. Watanabe, J. Masuda, S. Kobayashi, S.U. Kim and S. Yamaguchi. 2010. Transplantation of human mesenchymal stem cells promotes functional improvement and increased expression of neurotrophic factors in a rat focal cerebral ischemia model. J. Neurosci. Res. 88:1017-1025.

Wang, Q., X.N. Tang and M.A. Yenari. 2007. The inflammatory response in stroke. J. Neuroimmunol. 184:53–68.

Wei, L., J.L. Fraser, Z.Y. Lu, X. Hu and S.P. Yu. 2012. Transplantation of hypoxia preconditioned bone marrow mesenchymal stem cells enhances angiogenesis and neurogenesis after cerebral ischemia in rats. Neurobiol. Dis. 46(3):635-645.

Whitaker, V.R., L. Cui, S. Miller, S.P. Yu and L. Wei, 2007. Whisker stimulation enhances angiogenesis in the barrel cortex following focal ischemia in mice. J. Cereb.Blood Flow Metab. 27(1):57-68.

Whone, A.L., K. Kemp, M. Sun, A. Wilkins and N.J. Scolding. 2012. Human bone marrow mesenchymal stem cells protect catecholaminergic and serotonergic neuronal perikarya and transporter function from oxidative stress by the secretion of glial-derived neurotrophic factor. Brain Res. 1431:86-96.

Yang, C., L. Zhou, X. Gao, B. Chen, J. Tu, H. Sun, X. Liu, J. He, J. Liu and Q. Yuan. 2011. Neuroprotective effects of bone marrow stem cells overexpressing glial cell line-derived neurotrophic factor on rats with intracerebral hemorrhage and neurons exposed to hypoxia/reoxygenation. Neurosurgery. 68(3):691-704.

Yoo, S.W., S.S. Kim, S.Y. Lee, H.S. Lee, H.S. Kim and Y.D. Lee. 2008. Mesenchymal stem cells promote proliferation of endogenous neural stem cells and survival of newborn cells in a rat stroke model. Exp. Mol. Med. 40:387-397.

Zhang, L., T. Himi, I. Morita and S. Murota. 2000a. Hepatocyte growth factor protects cultured rat cerebellar granule neurons from apoptosis via the phosphatidylinositol-3 kinase/Akt pathway. J. Neurosci. Res. 59:489-496.

Zhang, Z.G., L. Zhang, Q. Jiang, R. Zhang, K. Davies, C. Powers, N. Bruggen and M. Chopp. 2000b. VEGF enhances angiogenesis and promotes blood–brain barrier leakage in the ischemic brain. J. Clin. Invest. 106:829–838.

Zhang, R., Y.Y. Xue, S.D. Lu, Y. Wang, L.M. Zhang, Y.L. Huang, A.P. Signore, J. Chen and F.Y Sun,. 2006.Bcl-2 enhances neurogenesis and inhibits apoptosis of newborn neurons in adult rat brain following a transient middle cerebral artery occlusion. Neurobiol. Dis. 24:345-356.


Refbacks

  • There are currently no refbacks.


Copyright (c)