Pathophysiology of Cerebral Ischemia

Nilton B. A. Junior, Ricardo J. Del Carlo, Lukiya S. C. Favarato, Evandro S. Favarato, Vanessa G. Pereira, Aline R. Murta, Daise Nunes Queiroz da Cunha

Abstract


Cerebrovascular accident (CVA) is the sudden interruption or decrease of blood supply (oxygen and glucose) to the brain resulting in cerebral infarction, permanent neurological damage, severe functional limitations and death. Stroke is the second most common cause of death worldwide and the leading cause in Brazil. The risk factors for CVA include systemic arterial hypertension and other vascular diseases, diabetes mellitus, sedentarism, dyslipidemia, and smoking. These risk factors are at high prevalence, globaly, increasing the prospects for new incidents of the disease. Currently, the treatment options for CVA are limited, partially because many promising medicines presented intolerable side effects or limited therapeutic effects in the clinical trials. In the acute and subacute phases of the CVA the therapeutic goals are to protect the neurons at risk, increase the endogenous capacity of the central nervous system (CNS) to regenerate itself, and diminish functional sequelae. This review discusses the role of molecular mechanisms underlying CVA is the key for new therapeutic discoveries aiming at neuroprotection, neuroregeneration and neurogenesis. 


Keywords


Cerebral Ischemia; Primary Brain Lesion, Secondary Brain Lesion

Full Text:

HTML PDF EPUB XML

References


Allan S.M., P.J. Tyrrell and N.J. Rothwell. 2005. Interleukin-1 and neuronal injury. Nat. Rev. Immunol. 5:629–640.

Bolaños, J.P. and A. Almeida. 1999. Roles of nitric oxide in brain hypoxia-ischemia. Biochim Biophys Acta. 1411:415–436.

Butovsky, O., A.E. Talpalar, K. Ben-yaakov and M. Schwartz. 2005. Activation of microglia by aggregated beta-amyloid or lipopolysaccharide impairs MHC-II expression and renders them cytotoxic whereas IFN-gamma and IL-4 render them protective. Mol. Cell. Neurosci. 29:381–393.

Camargo, E.C., L.A. Bacheschi and A.R. Massaro. 2005. Stroke in Latin America. Neuroimaging Clin. N. Am. 15(2):283-96.

Campos-Sousa, R.N., V.Y. Soares, K.J. Almeida, L.I. Carvalho, K.S. Jacobina, A.E. Athayde Netto, E.A. Macedo and L.A. Veloso. 2007. Knowledge of stroke among a Brazilian urban population. Arq. Neuropsiquiatria. 65:587-591.

Carbonell, T. and R. Rama. 2007. Iron, Oxidative Stress and Early Neurological Deterioration in Ischemic Stroke. Current Medicinal Chemistry. 14:857-874.

Cooper A.J. and B.S. Kristall. 1997. Multiple roles of glutathione in the central nervous system. Biol. Chem. 378(8):793-802.

Crack, P.J. and J.M. Taylor. 2005. Reactive oxygen species and the modulation of stroke. Free Radic. Biol. Med. 38:1433–1444.

Dirnagl, U., C. Iadecola and M.A. Moskowitz. 1999. Pathobiology of ischaemic stroke: na integrated view. Trends Neurosci. 22:391-397.

Dobrek, L. and P. Thor. 2011. Glutamate NMDA receptors in pathophysiology and pharmacotherapy of selected nervous system diseases. Postepy. Hig. Med. Dosw. 65:338–346.

Dringen, R., 2000. Metabolism and functions of glutathione in brain. Prog. Neurobiol. 62(6):649-71.

Droge W. 2002. Free radicals in the physiological control of cell function. Physiol. Rev. 82:47-95.

Feigin, V.L. 2005. Stroke epidemiology in the developing world. Lancet. 365(9478):2160-1.

Furukawa, K., W. Fu, Y. Li, W. Witke, D.J. Kwiatkowski And M.P. Mattson. 1997. The actin-severing protein gelsolin modulates calcium channel and NMDA receptor activities and vulnerability to excitotoxicity in hippocampal neurons. J. Neurosci. 17:8178–8186.

Grow, J. and D.E. Barks. 2002. Pathogenesis of hypoxic–ischemic cerebral injury in the term infant: current concepts. Clin. Perinatol. 29:585–602.

Gutteridge, J.M. and Halliwell, B. 2000. Free radicals and antioxidants in the year 2000. A historical look to the future. Ann. N. Y. Acad. Sci. 899:136-47.

Hallenbeck, J.M. 2002. The many faces of tumor necrosis factor in stroke. Nat. Med. 8:1363–1368.

Hankey, G.J. 1999. Stroke prediction and prevention by carotid endarterectomy: keep an eye on the doughnut and not just the hole. Cerebrovasc. Dis. 9(6):345-350.

Hossmann, K.A. 2009. Pathophysiological basis of translational stroke research. Folia Neuropathol. 47:213-227.

Jung, J.E., G.S. Kim and P.H. Chan. 2011. Neuroprotection by interleukin-6 is mediated by signal transducer and activator of transcription 3 and antioxidative signaling in ischemic stroke. Stroke. 42:3574–3579.

Kimelberg, H.K. and A.A. Mongin. 1998. Swelling-activated release of excitatory amino acids in the brain, relevance for pathophysiology. Contrib. Nephrol. 123:240–257.

Kostandy, B.B. 2012. The role of glutamate in neuronal ischemic injury: the role of spark in fire. Neurol. Sci. 33:223–237.

Liesz, A., E. Suri-Payer, C. Veltkamp, H. Doerr, C. Sommer, S. Rivest, T. Giese and R. Veltkamp. 2009. Regulatory T cells are key cerebroprotective immunomodulators in acute experimental stroke. Nat. Med. 15:192–199.

Liu, H., R. Colavitti, I.I. Rovira and T. Finkel. 2005. Redox-dependent transcriptional regulation. Circ. Res. 97: 967–974.

Mena, F.V., P.J. Baab, C.L. Zielke and H.R. Zielke. 2000. In vivo glutamine hydrolysis in the formation of extracellular glutamate in the injured rat brain. J. Neurosci. Res. 60:632–641.

Minelli, C., L.F. Fen and D.P. Minelli. 2007. Stroke incidence, prognosis, 30-day, and 1-year case fatality rates in Matão, Brazil: a population-based prospective study. Stroke. 38(11):2906-11.

Muntner, P., E. Garret, M.J. Klag and, J. Coresh. 2002. Trends in stroke prevalence between 1973 and 1991 in the US population 25 to 74 years of age. Stroke. 33(5):1209-13.

Olmez, I. and H. Ozyurt. 2012. Reactive oxygen species and ischemic cerebrovascular disease. Neurochemistry International. 60:208–212.

Poli, G., G. Leonarduzzi, F. Biasi and, E. Chiarpotto. 2004. Oxidative stress and cell signalling. Curr. Med. Chem. 11:1163–1182.

Porter, N.A. 1984. Chemistry of lipid peroxidation. Methods Enzymol. 105:273-82.

Radi, R., J.S. Beckman, K.M. Bush and B.A. Freeman. 1991. Peroxynitrite oxidation of sulfhydryls. The cytotoxic potential of superoxide and nitric oxide. J. Biol. Chem. 266:4244-4250.

Rivest, S. 2009. Regulation of innate immune responses in the brain. Nat. Rev. Immunol. 9:429–439.

Shalak, L. and J.M. Perlman. 2004. Hypoxic-ischemic brain injury in the term infant-current concepts. Early Human Development. 80:125-141.

Sharp, F.S., A. Lu, Y. Tang and D.E.J. Millhorn. 2000. Multiple molecular penumbras after focal cerebral ischemia. J. Cereb. Blood Flow Metab. 20(7):1011-32.

Shichita, T., T. Ago, M. Kamouchi, T. Kitazono, A. Yoshimura and H. Ooboshi. 2012. Novel therapeutic strategies targeting innate immune responses and early inflammation after stroke. J. Neurochem. 123 Suppl 2:29-38.

Wyatt, J.S. and A.D. Edwards, D. Azzopardi, E.O.R. Reynolds. 1989. Magnetic resonance and near infrared spectroscopy for investigation of perinatal hypoxic–ischemic brain injury. Arch. Dis. Child. 64:953-63.

Yuan J, and B.A. Yankner. 2000. Apoptosis in the nervous system. Nature. 12;407(6805):802-9.

Zhang, J., H.K. Takahashi and K. Liu. 2011. Anti-high mobility group box-1 monoclonal antibody protects the blood-brain barrier from ischemia-induced disruption in rats. Stroke. 42:1420–1428.


Refbacks

  • There are currently no refbacks.


Copyright (c)