DGAT1 Gene in Dairy Cattle: A Review

Safa A Mohammed, Siham A Rahamtalla, Salah S Ahmed, khalid mohammed elamin, Bakhiet M Dousa, Elhafiz A mmm, mohammed-khair A Ahmed

Abstract


The interest in the bovine DGAT1 gene has increased during the last few years. DGAT1 gene, encodes a microsomal enzyme that by using diacylglycerol and fatty acyl CoA as substrates catalyzes the terminal and committed step of triacylglycerol biosynthesis. This step is the most important storage form of energy for eukaryotic cells. DGAT1 is also important for the physiological processes involving triacylglycerol metabolism such as intestinal fat absorption, lipoprotein assembly, adipose tissue formation and lactation. Lactation was impaired in female mice lacking both copies of DGAT. This observation leads to a suggestion that DGAT1 gene was the functional candidate gene for milk production traits. The frequency of polymorphism in DGAT1 gene has been found to be very high in dairy cattle. Some associated studies such as, milk yield, fat content, protein yield and content have been carried out in dairy cattle. These associations will provide insight in to the underlying mechanism of DGAT1 gene and polymorphisms that can be used for selection purposes in dairy cows.


Keywords


Bovine, Fat content, Lactation, Milk yield, Triacylglycerol Metabolism

Full Text:

PDF

References


Barrefors, P., K. Granelli, A.L. Appelqvist, and L. Bjoerck. 1995. Chemical characterization of raw milk samples with and without oxidative off-flavor. J. Dairy Sci. 78: 2691–2699.

Bennewitz, J., N.S. Paul, C. Reinsch, B. Looft, C. Kaupe, G. Weimann, G. Erhardt, C. Thaller, M.Kühn, H. Schwerin, H. Thomsen, R. Reinhardt, B. Reents, and E. Kalm. 2004. The DGAT1 K232A mutation is not solely responsible for the milk production quantitative trait locus on the bovine chromosome 14. Journal of Dairy Science. 87:431–442.

Bülow, E.H., K. Möbius, V. Bähr, and R. Bernhardt. 1996. Molecular cloning and functional expression of the cytochrome P450 11B-hydroxylase of the Guinea pig. Biochem. Biophys. Res. Commun. 221:304–312.

Cases S., S.J. Smith, Y.W. Zheng. 1998. Identification of a gene encoding an acyl CoA:diacylglycerolacyltransferase, a key enzyme in triacylglycerol synthesis. Proceedings of the National Academy of Sciences of the United States of America. 95:13018–13023.

De Roos, A.P., C. Schrooten, E. Mullaart, M.P. Calus, and R.F. Veerkamp. 2007. Breeding value estimation for fat percentage using dense markers on Bos taurus autosome 14. Journal of Dairy Science. 90:4821–4829.

Farnir, F., B. Grisart, W. Coppieters, J. Riquet, P. Berzi, N. Cambi- sano, L. Karim, M. Mni, S. Moisio, P. Simon, D. Wagenaar, J. Vilkki, and M. Georges. 2002. Simultaneous mining of linkage and linkage disequilibrium to ï¬ne map quantitative trait loci in outbred half-sib pedigrees: Revising the location of a quantitative trait locus with major effect on milk production on bovine chromo- some 14. Genetics. 161:275–287.

Gautier, M., A. Capitan, S. Fritz, A. Eggen, D. Boichard, and T. Drue. 2007. Characterization of the DGAT1 K232A and Variable Number of Tandam Repeat Polymorphisms in French Dairy Cattle. J. Dairy Sci. 90:2980–2988.

Grisart, B., F. Farnir, L. Karim. 2004. Genetic and functional conï¬rmation of the causality of the DGAT1 K232A quantitative trait nucleotide in affecting milk yield and composition. Proceedings of the National Academy of Sciences of the United States of America. 101:2398–403.

Grisart, B., W. Coppieters, F. Farnir, L. Karim, C. Ford, N. Cambisano, M. Mni, S. Reid, R. Spelman, M. Georges, and R. Snell. 2002. Extensive genome-wide linkage disequilibrium in cattle. Genome Res. 12: 222–231.

Kaupe, B., H. Brandt, E.M. Prinzenberg, G. Erhardt. 2007. Joint analysis of the influence of CYP11B1 and DGAT1 genetic variation on milk production, somatic cell score, conformation, reproduction, and productive lifespan in German Holstein cattle. Journal of animal Science. 85:11–21.

Kawamoto, T., Y. Mitsuuchi, K. Toda, Y. Yokoyama, K. Miyahara, S. Miura, T. Ohnishi, Y. Ichikawa, K. Nakao, H. Imura, S. Ulick, and Y. Shizuta. 1992. Role of steroid 11β-hydroxylase and steroid 18-hydroxylase in the biosynthesis of glucocorticoids and miner-alocorticoids in humans. Proc. Natl. Acad. Sci. USA 89:1458–1462.

Kennedy, E.P. 1957. Metabolism of lipides. Annu. Rev. Biochem., 26, 119-148

Kirita, S. 1990. Structural analysis of multiple bovine P-450(11 beta) genes and their promoter activities. J. Biochem. 108(6):1030-1041.

Kühn, C., G. Thaller, and A. Winter. 2004. Evidence for multiple alleles at the DGAT1 locus better explains a quantitative trait locus with major effect on milk fat content in cattle. Genetics. 167:1873–1881.

Mackay,T.F. 2001. The genetic architecture of quantitative traits. Annu Rev Genet. 35:303-339.

Mayorek, N. and J. Bar-Tana. 1985. Triacylglycerol synthesis in cultured rat hepatocytes. J. Bid. Chem. 260: 6528- 6532.

Mayorek, N., I. Grinstein and J. Bar-Tana. 1989. Triacylglycerol synthesis in cultured rat hepatocytes. The rate- limiting role of diacylglycerol acyltransferase. Eur. J. Biochem. 182(2): 395-400.

Mellon, S.H., S.R. Bair, and H. Morris. 1995. P450cllB3 mRNA, transcribed from a third p450cll gene, is expressed in a tissue-specific, developmentally, and hormonally regulated fashion in the rodent adrenal and encodes a protein with both 11-hydroxylase and 18-hydroxylase activities. J. Biochem. 270:1643–1649.

Muller, J. 1998. Regulation of aldosterone biosynthesis: The end of the road? Clin. Exp. Pharmacol. Physiol. Suppl. 25:S79–S85.

Musa, L.M.A. 2007. Characterization and utilization of dairy cattle in Sudan. Dissertation Humboldt- Universitatzu berlin.

Naeslund, J., W.F. Fikse, G.R. Pielberg, and A. Lunden. 2008. Frequency and effect of the bovine Acyl-CoA. Diacylglycerol acyltransferase 1 (DGAT1) K232A polymorphism in Swedish dairy cattle. J. Dairy Sci. 91(5):2127-2134.

Nina, M., G. Irene, and B.T. Jacob. 1989. Triacylglycerol synthesis in cultured rat hepatocytes. European Joural of Biochemistry. 182(2):395-400.

Palmquist, D.L., A.D. Beaulieu, and D.M. Barbano. 1993. Feed and animal factors influencing milk fat composition. Journal of Dairy Science. 76: 1753–1771.

Palmqvist, K. 1993. Photosynthetic CO2 - use efficiency in lichens and their isolated photobionts: The possible role of a CO2 - concentrating mechanism. Planta. 191: 48-56.

Rahamtalla .S.A. 2010. Identification of genetic variants influencing milk production traits and somatic cell score in dairy cattle dissertation Humboldt- Universitatzu berlin.

Rahnmatalla, S., U. Muller, E. Strucken, and G.A. Brockmann. 2008. Der Effekt von DGAT1- Genvarianten in Deutschen Holetin-Kuhenunder produtoion be dingungen. Zuchtungskunde. 80:473-484.

Renner, E. and U. Kosmack. 1974. Genetische Aspekte zur Fettsäure-nzusammensetzung des Milchfettes. 2. Fettsäurenmuster der Milch von Nachkommen populationen. Züchtungskunde. 46: 217–226.

Renner, E., and U. Kosmack. 1974. Genetische Aspekte zur Fettsäure-nzusammensetzung des Milchfettes. 2. Fettsäurenmuster der Milch von Nachkommen populationen. Züchtungskunde. 46: 217–226

Sanders, K., J. Bennewitz, N. Reinshch, G. Thaller, E.M. Prinzenberg, C. Kuhn, and E. Kalm. 2006. Characterization of the DGAT1 mutations and the CSNISI promoter in the German Angeln dairy cattle population. J. Dairy Sci. 89(8):3164-3174.

Shipe, W, F., R. Bassette, D.D. Deane, W.L.D. H. Kleyn, M.E. Morgan, J.H. Nelson, and R.A. Scanlan. 1978. off flovors of milk: nomenclature, standards and bibliography. Journal of Dairy Science. 61:855-869.

Shorten P. R., T.B. Pleasants and G.C. Upreti. 2004. A mathematical model for mammary fatty acid synthesis and triglyceride assembly: the role of stearoyl CoA desaturase (SCD). Journal of Dairy Science Res. 71:385-397.

Smith, S.J., S. Cases, D.R. Jensen, H.C. Chen, E. Sande, B. Tow, D.A., Sanan, J. Raber, R.H Eckel and Farese R.V. Jr. 2000. Obesity resistance and multiple mechanisms of triglyceride synthesis in mice lacking Dgat. Nature Genetics. 25:87–90.

Stone, S.J. 2011. Mammalian Diacylglycerol Acyltransferase Enzymes. The Lipid Library (http://lipidlibrary.aocs.org/animbio/dgat/index.htm).

Syrstad, O., N. Standal, and Ø. Karijord. 1982. Concentration of various fatty acids in milk. Z. Tierzücht. Züchtungsbiol. 99: 94–100.

Taymans, S.E., S. Pack, E. Pak, D. J. Torpy, Z. Zhuang, and C.A. Stratakis. 1998. Human CYP11B2 (aldosterone synthase) maps to chromosome 8q24.3. J. Clin. Endocrinol. Metab. 83:1033–1036.

Thaller, G., W. Krämer, A .Winter, B .Kaupe. 2003. Effects of DGAT1 variants on milk production traits in German cattle breeds. J. Anim. Sci. 81: 1911-1918.

Wagner, M.J., Y. Ge, M. Siciliano, and D.E. Wells. 1991. A hybrid cell mapping panel for regional localization of probes to human chromosome 8. Genomics. 10:114–125.

Weiss, S.B. and E.P. Kennedy. 1956. The enzymatic synthesis of triglycerides. Journal of American. Chemical. Society. 78:(14) 3550-3550.

Winter A., W. Kramer, F.A. Werner, S. Kollers, S. Kata, G. Durstewitz, J. Buitkamp, J.E.Womack, G. Thaller and R. Fries. 2002. Association of a lysine-232/alanine polymorphism in a bovine gene encoding acyl-CoA: triacylglycerol acyltransferase (DGAT1) with variation at a quantitative trait locus for milk fat content. Proceedings of the National Academy of Sciences of the United States of America. 99:9300–9305.


Refbacks

  • There are currently no refbacks.


Copyright (c) 2018 Global Journal of Animal Scientific Research

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.